
UniRoma2 - SOSE 1

Service-Oriented Software Engineering - SOSE
(Academic Year 2017/2018)

• Teacher:
Prof. Andrea D’Ambrogio

• Objectives:
– provide methods and techniques to regard software production as the result

of an engineering process (software engineering)
– illustrate principles, standards and technologies of model-driven

engineering, with application to the development of service-oriented
software systems

• Exams:
– 2 dates at the end of the I semester
– 2 dates at the end of the II semester
– 2 dates in September

• Teaching Material:
– lecture notes (posted on the website)

• Website: Didattica Web (didattica.uniroma2.it)

UniRoma2 - SOSE 2

Software Engineering

• Discipline for software production founded on
well-known engineering principles (design and
validation)

• Essential to look at software as an industrial
product

• When missing we observe:
– software products of bad quality
– reduced competitiveness:

• cost overrun
• time overrun

UniRoma2 - SOSE 3

A young discipline…
• Electrical and electronic engineers, interested in

building computers, regarded programming as
something to be done by others – either scientists
who wanted the numerical results or mathematicians
interested in numerical methods

• Engineers viewed programming as a trivial task, akin
to using a calculator

• Many refer to programming as a “skill” and deny that
engineering principles must be applied when building
software

UniRoma2 - SOSE 4

The Unconsummated Marriage(1)

• Unconsummated marriage between…
– computer science (programming theory) and
– engineering principles (design and validation)

• Software engineering should wed a subset of
computer science with the concepts and discipline
taught to other engineers
– Engineers must accept that they don’t know enough

computer science
– Computer scientists must recognize that being an

engineer is different from being a scientist, and that
software engineers require an education very different
from their own

(1) D.L. Parnas, Software Engineering: An Unconsummated Marriage, Comm. of the ACM, Sept. 1997

UniRoma2 - SOSE 5

The Unconsummated Marriage
• Successful marriage example: chemical

engineering
– a marriage of chemistry with classical engineering

areas (such as thermodynamics, mechanics, and fluid
dynamics)

– nowadays chemical engineering is not regarded as a
branch of chemistry

• SwEng, term conied about 50 years ago
– NATO conference at Garmisch, Germany (1968)
– to testify the need of regarding software production as

an engineering effort

UniRoma2 - SOSE 6

Results of the NATO Conference
• Programming is neither science nor mathematics
• Programmers are not adding to our body of

knowledge, they build products
• Using science and mathematics to build products

for others is what engineers do
• Software is a major source of problems for those

who own and use it. The problems are exactly
those to be expected when products are built by
people who are educated for other professions and
believe that building things is not their “real job”

Typical Aspects of SW Products
(1)

• ACCIDENTAL difficulties (can be solved by

technology advancements)

– attitude

– maintenance

– specification and design

– teaming

UniRoma2 - SOSE 7

UniRoma2 - SOSE 8

SW lifecycle = 3 Stages, 6 Phases
• SW production = development + maintenance
• Development (stage 1) = 6 phases

1. Requirements definition
2. Requirements specification (or analysis)
3. Planning
4. Design (architectural and detailed)
5. Coding
6. Integration

• Maintenance (stage 2)
– covers 60% of lifecycle costs

• Phasing-out/Retirement (stage 3)

UniRoma2 - SOSE 9

The impact of change
• The impact of change depends on the phase during which

the change is accommodated
• Changes during later phases have a severe impact on

cost and may be over an order of magnitude more
expensive than the same change requested earlier

UniRoma2 - SOSE 10

Where is Testing?
• Not explicitly mentioned at stage 1

• Not a separate phase

• Activity to be carried out along the entire lifecycle

• Two types:
– Verification (at the end of each phase)

– Validation (at the end of development, typically)

• Verification = are we building the product right?

• Validation = are we building the right product?

Defect Removal Efficiency (DRE)
• DRE refers to the percentage of defects found before

delivery of the software to its actual clients or users

• If the development team finds 900 defects before
delivery and the users find 100 defects in a standard
time period after release (normally 90 days), then the
DRE value is 90 percent

• The U.S. average in 2016 is only about 92 percent
(values change according to the software lifecycle
model)

UniRoma2 - SOSE 11

Typical Aspects of SW products
(2)

• ESSENTIAL difficulties (not solved by science

and technology advancements)

– complexity

– conformity

– changeability

– invisibility

UniRoma2 - SOSE 12

UniRoma2 - SOSE 13

Typical Aspects of SW Products
(3)

• COST

– cost vs. product size

– cost vs. replicas

– cost vs. market size

UniRoma2 - SOSE 14

SW Product Cost Issues

• Cost proportional to the square of size (C=aS2)

– building two products of size S/2 has a total cost lower
than building a single product of S

• Building a replica has a null cost

• Putting in the market a product of double size

– requires a price four times greater if the market size is
kept unchanged

– requires a market size four times greater if the price is
kept unchanged

UniRoma2 - SOSE 15

Definitions (1)

• SW product (or SW, briefly) =
= Code + Documentation

• Artefact = intermediate SW product
– requirements definition document
– requirements analysis document
– design document

• Code = final SW product
• SW system = integrated set of SW products

UniRoma2 - SOSE 16

Definitions (2)
• Customer = who commissions SW production

• Developer = who builds the SW product

• User = who uses the SW product

• SW types
– Internal SW

• customer and developer belong to the same organization

– Contract SW
• customer and developer belong to different organizations

– SW for the market
• the customer is the market

UniRoma2 - SOSE 17

SW Reliability Issues

• Informally
– SW product credibility

• Formally
– probability that the product works

“correctly” in a given timeframe (mission
time)

UniRoma2 - SOSE 18

Defect, Failure, Error
• Defect (Bug)

– anomaly present in a SW product

• Failure
– unexpected behavior of a SW product due to the

presence of one or more defects

• Error
– wrong action of the developer who introduces a defect

into the SW product (because of ignorance, lack of
attention, etc.)

SW Reliability

• Intuitively:

– a SW product with many defects is
not reliable

• It is obviuos that:

– SW reliability improves as long as
defects are fixed

UniRoma2 - SOSE 19

SW Reliability Characteristics
(1)

• The relationship between:
– observed reliability and
– number of hidden (dormant) defects
is not easy

• Removing defects from the product parts less
used (executed)
– has a negligible impact on the observed

reliability
UniRoma2 - SOSE 20

UniRoma2 - SOSE 21

The rule 10-90
• Experiments carried out on SW programs of

large size show that:
– 90% of the execution time is spent by

executing only 10% of the program
instructions

• Such 10% is referred to as:
– the core of the program

SW Reliability Characteristics
(2)

• The reliability improvement due to the

removal of a single defect:

– depends on where that defect is located

(in other words, if that defect is part or not

of the program core)

UniRoma2 - SOSE 22

SW Reliability Characteristics
(3)

• Then, the observed reliability
depends on:

–how the software product is used

–in technical terms, the operational

profile
UniRoma2 - SOSE 23

SW Reliability Characteristics
(4)

• Due to the fact that different users may use
the SW product according to different
operational profiles:
– the defects that are revealed to a user

• may not be revealed to a different user

• In conclusion, SW reliability:
– depends on the user

UniRoma2 - SOSE 24

HW Reliability vs. SW Reliability
(1)

• SW failures are due to:
– the presence of defects
– software does not wear out

• HW failures are typically due :
- components wear out
- components that do not behave as specificied
- components damages

UniRoma2 - SOSE 25

HW Reliability vs. SW Reliability
(2)

• HW defects examples
– a damaged resistor

– a short circuit in a capacitor

– a logic gate that halts (on 1 or 0)

• To fix an HW defect:
– the failed component is replaced

UniRoma2 - SOSE 26

HW Reliability vs. SW Reliability
(3)

• SW defects are hidden (dormant)

– the SW product keeps on failing

• if the necessary fixes are not carried out

• Due to the different effects

– the metrics valid for HW reliability cannot
be extended to SW reliability

UniRoma2 - SOSE 27

HW Reliability vs. SW Reliability
(4)

• After fixing the HW product

– its reliability returns to be as it was before

• After fixing the SW product

– its reliability may result improved or

worsened

UniRoma2 - SOSE 28

HW Reliability vs. SW Reliability
(5)

• HW reliability objective

– stability (i.e., keeping failure rate constant)

• SW reliability objective

– reliability growth (i.e., decreasing failure

rate)

UniRoma2 - SOSE 29

HW Failure Rate (bathtub curve)

UniRoma2 - SOSE 30

Time

Failure
Rate

early death wear-out

SW Failure Rate

UniRoma2 - SOSE 31

SW Availability

• Percentage of the time that the SW product

has been usable during its lifecycle

• Depends on
– the number of failures that occur

– the time required to fix the product

UniRoma2 - SOSE 32

SW Reliability/Availability
Significance

• Important metrics for systems in which

– service outages lead to economic and/or social losses

(critical systems)

• transportation systems

• air traffic control systems

• energy production and distribution systems

• communication systems

• etc.
UniRoma2 - SOSE 33

UniRoma2 - SOSE 34

Conclusion (1)

• Over the last 50 years SW production has evolved

according to the following periods

– craftsmanship period, during which SW is developed

by single and creative programmers

– pre-industrial period, during which SW is developed by

small groups of highly specialized professionals

– industrial period, during which SW production and

maintenance is properly planned and coordinated, and

designers/developers are supported by automated tools

Conclusions (2)
• The term «software engineering» has been coined in

1968, during the NATO conference held at Garmisch

(Germany), to testify the need of regarding software

production as the result of an engineering effort

• The IEEE Standard 610.12-1990 (glossary of software

engineering terminology) defines software engineering as:

1) The application of a systematic, disciplined, quantifiable

approach to the development, operation and maintenance of

software; that is, the application of engineering to software

2) The study of approaches as in 1)

UniRoma2 - SOSE 35

UniRoma2 - SOSE 36

Conclusions (3)
• A SW product can be considered as a set of elements that

contribute to build a “configuration” of:
– programs
– documents
– multimedia data

• It is built by software engineers who apply a process to
eventually get products of expected quality

• An engineering approach has to be applied, as well as for
other products

• SW characteristics:
– is ”engineered”
– does not wear out
– is complex, must conform, is changeable and invisible

UniRoma2 - SOSE 37

Conclusions (4)
• What can we make to meet the software quality

requirements?
• What can we make to balance the ever increasing

demand by keeping under control the allocated budget?
• What can we make to effectively update legacy

applications?
• What can we make to avoid delayed product releases?
• What can me make to successfully apply new

technologies?

Software Engineering methods, tools and techniques contribute to
provide an answer to the aforementioned questions, with the

objective of building software products of expected/required quality

UniRoma2 - SOSE 38

The SW myths (to debunk)
• If we get behind schedule, we can add more

programmers and catch up
• A general statement of objectives is sufficient to

begin writing programs; we can fill in the details
later

• Once we write the program and get it to work, our
job is done

• Until I get the program "running" I have no way of
assessing its quality

• Software engineering will make us create
voluminous and unnecessary documentation and
will invariably slow us down

