
UniRoma2 - Service-oriented Software Engineering 1

The Design Phase
• The lifecycle phase that operates the transition:

– from what is the software to be produced

– to how that software has to be produced

• Takes as input the software requirements specification 

document and yields as output the design document, which 
drives the subsequent coding phase

• It is divided into two sub-phases:

– architectural (or preliminary, or high-level) design, which operates 
the modular decomposition leading to the software architecture

– detailed design, which provides the detailed design, in terms of data 
structures and algorithms, of each single module of the software 
architecture



UniRoma2 - Service-oriented Software Engineering 2

Design principles
• stepwise refinement (also used in the 

requirements specification phase)

• abstraction (also used in the requirements 
specification phase)

• modular decomposition

• modularity

• information hiding

• reusability



UniRoma2 - Service-oriented Software Engineering 3

Stepwise refinement
• Design strategy that makes use of a top-down 

approach, as proposed by Wirth (1971) in the 
context of structured programming

• The refinement process starts from the 
specification of a function (or data) that does not 
include the internal mechanisms of the function (or 
the internal details of the data structure)

• At each step of refinement the level of detail of the 
specification is increased by including additional 
elements, until the entire specification is reduced to 
base elements



UniRoma2 - Service-oriented Software Engineering 4

Stepwise refinement (2)

• The importance of stepwise refinement directly 

comes from the Miller Law (1956): "at any one 

time a human being can concentrate on at most 7 

± 2 chunks (quanta of information)"

• Refinement is a concept complementary to the 

abstraction concept



UniRoma2 - Service-oriented Software Engineering 5

Abstraction
• Abstraction consists of focusing on the essential 

aspects of a given entity, by suppressing the more 
complex details

• The abstraction concept has been introduced by 
Djikstra (1968) in order to describe the layered 
architecture of operating systems

• In a conventional (i.e., waterfall) software process, 
each phase gives a more refined solution

• This means focusing on what an entity is and what it 
does before dealing with how it has to be realized



UniRoma2 - Service-oriented Software Engineering 6

Abstraction (2)
• Abstraction can apply to control or to data:

– control (or procedural) abstraction (e.g., C functions)
– data abstraction (e.g., C data structures)

• A data structure along with the actions to be 
executed over it is referred to as providing data 
encapsulation (e.g., a stack, data structure with 
the actions that implement the LIFO access 
policy)

• Using data encapsulation at design time allows 
one to obtain significant advantages both during 
the coding phase and during maintenance



UniRoma2 - Service-oriented Software Engineering 7

Abstract Data Types
• An abstract data type(ADT) identifies a data type 

whose instances provide data encapsulation

• An ADT combines control and data abstraction

• Using ADTs allows one to improve software 

quality, in terms of better levels of reusability and 

maintainability attributes

• A C++ class is an example of ADT, which also 

supports inheritance and polymorphism



UniRoma2 - Service-oriented Software Engineering 8

Example
abstract

data
type

(C++ class)



UniRoma2 - Service-oriented Software Engineering 9

Modularity (1)
• Software products made of a single monolithic 

code block are difficult to:
– maintain
– fix
– understand
– reuse

• A valid solution is to decompose the product 
into a set of smaller segments, denoted as 
modules



UniRoma2 - Service-oriented Software Engineering 10

Modularity (2)
• Definition (IEEE Std 610.12 - Standard 

Glossary of Software Engineering Technology):

the extent to which software is composed of 

discrete components such that a change to 

one component has minimal impact on the 

other components



UniRoma2 - Service-oriented Software Engineering 11

Modular decomposition
• A module is a software element that:

– includes program statements, processing logic and data 
structures

– can be compiled independently and stored in a software 
library

– can be included in a program
– can be used by invoking module segments identified by 

a name and a list of parameters
– can use other modules

• Modular decomposition of a software product 
yields as output the so-called modular 
architecture (or structure chart)



UniRoma2 - Service-oriented Software Engineering 12

Modular decomposition (2)
• The modular architecture describes the structure 

of modules, along with how such modules interact
with each other and the data structures that are 
used

• Modular decomposition is based on the “divide et 
impera” principle

• Let’s denote as p1 and p2 two problems, C their 
complexity and E the effort needed to solve them. 
Then:

C(p1) > C(p2) Þ E(p1) > E(p2)
C(p1+p2) > C(p1) + C(p2)

ß
E(p1+p2) > E(p1) + E(p2)



UniRoma2 - Service-oriented Software Engineering 13

• A modular decomposition is considered good if 
obtains:
– Maximum cohesion internal to modules
– Minimum coupling between modules

• Obtaining maximum cohesion and minimum 
coupling allows one to get increased levels of the 
following software product quality attributes:
– Understandability
– Maintainability
– Extensibility
– Reusability

Modular decomposition (3)



UniRoma2 - Service-oriented Software Engineering 14

Cohesion/Coupling
with respect to Modularity



UniRoma2 - Service-oriented Software Engineering 15

Modularity vs. Cost

Number of builds

Cost

Integration cost

Cost of builds

Minimum 
cost region

Total cost



UniRoma2 - Service-oriented Software Engineering 16

Cohesion
• Various actions are usually required to execute a 

given function

• Such actions can be carried out by a single module, 
as well as be spread into different modules

• Module cohesion
– a measure of the module capability to accomplish internally

what required to execute a function (i.e., without interacting 
with other modules)

• Cohesion thus measures the strength of internal 
relationship between elements within a given module



UniRoma2 - Service-oriented Software Engineering 17

Cohesion levels
(1 is the worst, 7 the best)

1. Coincidental (no relationship between module elements)
2. Logical (logically related elements, characterized by the fact that only 

one is executed by the calling module)
3. Temporal (temporally related elements, i.e., the elements are 

processed at a particular time in program execution)
4. Procedural (elements related by the fact that are executed according 

to a predefined sequence).
5. Communicational (elements related by the fact that are executed 

according to a predefined sequence and on a single data structure)
6. Informational (each element has a separate portion of code with 

associated input/output ports; all elements operate on the same data 
structure)

7. Functional (all the elements are related by the fact that execute a 
single function)



UniRoma2 - Service-oriented Software Engineering 18

Cohesion levels (2)

{

optimal for the structured paradigm
optimal for the OO paradigm



UniRoma2 - Service-oriented Software Engineering 19

Coincidental Cohesion: example
• Module functions:

– print next line

– invert characters of the second string 
parameter

– add 7 to the fifth parameter

– perform int-double conversion to the fourth 
parameter 



UniRoma2 - Service-oriented Software Engineering 20

Logical Cohesion: example



UniRoma2 - Service-oriented Software Engineering 21

Temporal Cohesion: example

• Module functions:
– Open old_master_file
– Open new_master_file
– Open transaction_file
– Open print_file
– Initialize sales_region_table
– Read first transaction_file records
– Read first old_master_file record



UniRoma2 - Service-oriented Software Engineering 22

Procedural Cohesion: example
• Module functions:

– Read part_number from database

– Use part_number to update 
repair_record on maintenance_file



UniRoma2 - Service-oriented Software Engineering 23

Communicational Cohesion: example

• Ex. 1: module functions

– Update record_a in database

– Write record_a to the trajectory_file

• Ex. 2: module functions

– Calculate new_trajectory

– Send new_trajectory to the printer



UniRoma2 - Service-oriented Software Engineering 24

Informational Cohesion: example



UniRoma2 - Service-oriented Software Engineering 25

Example Structure Chart & Modules Cohesion



UniRoma2 - Service-oriented Software Engineering 26

Coupling
• A measure of the degree of interaction between 

modules
• Coupling levels (1 is the worst, 5 the best):

1.Content (a module explicitly refers to the content of 
another module)

2.Common (two modules that have complete access to 
the same data structure)

3.Control (a module that explicitly controls the execution 
of another module)

4.Stamp (a module that passes a data structure to 
another module, which uses some elements of the data 
structure only)

5.Data (a module that passes an argument of simple type 
to another module, or a data structure for which all 
elements are used).



UniRoma2 - Service-oriented Software Engineering 27

Factors affecting Coupling
Strength of coupling depends on:
• the number of references of one module by 

another
• the amount of data passed/shared between 

modules
• the complexity of the interface between 

modules
• the amount of control exercised by one 

module over another



UniRoma2 - Service-oriented Software Engineering 28

Content Coupling: example

p®q

• Ex. 1: module p modifies a statement 
of module q

• Ex. 2: p refers to local data of module 
q in terms of some numerical 
displacement within q

• Ex. 3: p branches to a local label of q



UniRoma2 - Service-oriented Software Engineering 29

Common Coupling: example

{

}

>



UniRoma2 - Service-oriented Software Engineering 30

Control Coupling: example
• Module p calls module q

– and asks q to perform an action, 

– q passes back a flag (e.g. “task not 

completed”) 

– and also asks p to perform an action 

(e.g. “print an error message”)



UniRoma2 - Service-oriented Software Engineering 31

Example Structure Chart & Modules Coupling
parameters

coupling

s



UniRoma2 - Service-oriented Software Engineering 32

Information hiding
• Control and data abstraction are derived from a more 

general concept, denoted as information hiding and 
introduced by Parnas (1971)

• Information hiding consists in defining and designing a 
module so that implementation details (both data and 
functions) that are not required to use that module are 
hidden, and thus not visible to other modules

• The advantages of information hiding are evident when it 
comes to apply changes to software products (testing and
maintenance activities)



UniRoma2 - Service-oriented Software Engineering 33

Information hiding example

Example of 
abstract data 
type (C++ class)
with information 
hiding



UniRoma2 - Service-oriented Software Engineering 34

Reusability
• Reusability refers to the ability of using already available 

components into different products
• A reusable component does not merely identify a module 

or code fragment, but also design solutions, document 
sections, sets of test data and/or estimations of 
development cost and time

• Advantages:
– significant reductions in terms of software development cost and 

time 
– reliability growth, due to the use of already validated components

• Reusability at design time applies to:
(a) software modules
(b) application frameworks, which incorporate the application logic of 

a design solution
(c) design patterns, which identify design solutions to recurrent 

design problems 
(d) software architectures, which include (a), (b) and (c)



UniRoma2 - Service-oriented Software Engineering 35

Reusability (2)

software
module

application
framework

design
pattern

software
architecture


