english English
italiano Italiano
Visitatore Visitatore
Torna alla Home Homepage...

Info Generali:

  • Dipartimento: Scienze Matematiche, Fisiche E Naturali
  • Tipologia: Corso Di Laurea Dm.270/04
  • Corso di Laurea: Matematica
  • Settore Ministeriale: MAT/02
  • Codice di verbalizzazione: 8065627
  • Metodi di insegnamento: Frontale
  • Metodi di valutazione: Scritto E Orale
  • Prerequisiti: Si richiede allo studente la conoscenza - almeno in buona parte: eventuali mancanze possono essere ragionevolmente recuperate durante il corso - dei seguenti argomenti (normalmente trattati in un corso di "Algebra 1" o "Algebra"): [1] Insiemi, operazioni tra insiemi; partizioni, quozienti. Corrispondenze, applicazioni (o "funzioni"), relazioni; equivalenze, ordini. Il Teorema Fondamentale delle Applicazioni. [2] Il Sistema dei Numeri Naturali; Principio di Induzione; operazioni, ordine e divisione con resto tra numeri naturali. Numerazioni in base qualsiasi. Elementi di calcolo combinatorio. [3] Cardinalita (o "potenza") di un insieme, numeri cardinali; insiemi finiti, insiemi infiniti; insiemi numerabili. Primo e Secondo Teorema di Cantor. Cardinali infiniti superiori. [4] Insiemi con una operazione (="gruppoidi"); (omo)morfismi; il Teorema di Cayley (per semigruppi). Relazioni compatibili con un'operazione: gruppoidi quoziente; il Teorema Fondamentale di Omomorfismo per Gruppoidi. Gruppoidi cancellativi; il gruppo associato ad un gruppoide commutativo cancellativo. [5] Costruzione dell'insieme Z dei numeri interi (con operazioni, ordine, valore assoluto, divisione con resto). Divisibilita in Z: elementi primi, elementi irriducibili; M.C.D. e m.c.m. in Z; l'algoritmo euclideo per M.C.D. e identita di Bezout. Il Teorema Fondamentale dell??Aritmetica. Esistenza in Z di infiniti elementi irriducibili. La funzione di Eulero. Equazioni diofantee in Z. Congruenza modulo n in Z; somma e prodotto modulo n; criteri di divisibilita tra numeri interi. Equazioni congruenziali (lineari), equazioni modulari (lineari). Invertibilita e calcolo di potenze modulo n: il Piccolo Teorema di Fermat, il Teorema di Eulero. Sistemi di equazioni congruenziali (lineari); il Teorema Cinese del Resto. [6] Gruppi e loro (omo)morfismi. Il Teorema di Cayley per Gruppi. Sottogruppi; il sottogruppo generato da un sottoinsieme. Gruppi e sottogruppi ciclici; ordine di un elemento in un gruppo. Il Teorema di Struttura dei Gruppi Ciclici; sottogruppi di un gruppo ciclico; generatori di un gruppo ciclico. Equivalenza (destra e sinistra) in un gruppo associata ad un sottogruppo. Classi laterali di un sottogruppo; indice di un sottogruppo. Il Teorema di Lagrange. Il sottogruppo associato ad una equivalenza compatibile in un gruppo; sottogruppi normali. Gruppi quoziente. Immagine e nucleo di un morfismo di gruppi. Il Teorema Fondamentale di Omomorfismo per Gruppi. Il gruppo simmetrico su un insieme; decomposizione di una permutazione in cicli disgiunti. [7] Anelli: definizione generale, classi speciali, esempi e controesempi; sottoanelli; il sottoanello generati da un sottoinsieme. (Omo)morfismi tra anelli; immagine e nucleo. Il Teorema di Cayley per Anelli: il caso speciale degli anelli unitari. Relazioni compatibili in un anello, anelli quoziente; ideali sinistri/destri/bilateri. L'ideale generati da un sottoinsieme; ideali principali. Il Teorema Fondamentale di Omomorfismo per Anelli. Il campo dei quozienti di un dominio di integrita. Divisibilita in un dominio unitario; elementi associati; M.C.D., m.c.m., elementi irriducibili, elementi primi. Anelli (a ideali) principali. Esistenza di M.C.D., di identita di Bezout e di m.c.m. in anelli principali. Anelli euclidei; ogni anello euclideo e unitario e a ideali principali. Algoritmo euclideo per il calcolo di M.C.D. e di identita di Bezout nei domini euclidei; risoluzione di equazioni diofantee, di equazioni congruenziali, di equazioni modulari, di sistemi di equazioni congruenziali (Teorema Cinese del Resto) per anelli euclidei. Domini a fattorizzazione, domini a fattorizzazione unica (=DFU). Ogni anello euclideo e un DFU. Ogni dominio a ideali principali e un DFU.
  • Obiettivi: OBIETTIVI FORMATIVI: Conseguire una buona conoscenza delle strutture algebriche principali - gruppi, anelli, campi - includendo alcuni risultati di struttura per classi particolari e le relazioni notevoli tra i diversi tipi di struttura algebrica (come ad esempio la teoria di Galois per i campi). CONOSCENZA E CAPACITA DI COMPRENSIONE: Lo studente dovra conoscere i tipi principali di strutture algebriche, nonche esempi e controesempi che illustrino i vari casi e le differenze tra essi; in particolare dovra capire le relazioni gerarchiche tra diversi livelli di astrazione/generalizzazione di nozioni fondamentali che vengono via via perfezionate in nozioni piu complesse. Inoltre, lo studente non potra limitarsi a apprendere meccanicamente procedure piu o meno algoritmiche per la risoluzione di problemi, ma dovra effettivamente capire perche tali procedure funzionano. CAPACITA DI APPLICARE CONOSCENZA E COMPRENSIONE: Lo studente dovra essere in grado di risolvere problemi ed esercizi relativi agli argomenti trattati nel corso; esempi di tali problemi ed esercizi saranno svolti in aula durante il corso, e materiale adeguato per la preparazione in tal senso sara fornito on-line. AUTONOMIA DI GIUDIZIO: Lo studente dovra essere in grado riconoscere autonomamente quando un problema matematico si possa inquadrare nell'ambito di una o l'altra delle teorie studiate nel corso. Piu in dettaglio, in relazione a problemi specifici dovra essere in grado di capire quali tecniche possano essere utilizzate, e quali risultati gia noti applicati, per risolvere la questione affrontata. ABILITA COMUNICATIVE: Lo studente dovra essere in grado di spiegare compiutamente gli argomenti trattati, sia in forma orale che in forma scritta che in modalita mista (orale con ausilio di formule e/o calcoli e/o immagini scritte). CAPACITA DI APPRENDIMENTO: Lo studente dovra capire le nozioni studiate e le idee che ne sono alla base, e i risultati relativi, con le dimostrazioni che ne sono a supporto; inoltre, e fondamentale che conosca anche esempi e controesempi che illustrino tali nozioni e risultati.
  • Ricevimento: per appuntamento

Didattica Didattica:

  • A.A.: 2019/2020
  • Canale: UNICO
  • Crediti (CFU): 7
  • Obbligo di Frequenza: No